Road Maintenance Management Using Pavement Condition Index (PCI) Survey

Tisara Sita

Balai Besar Pelaksanaan Jalan Nasional VII, Direktorat Jenderal Bina Marga, Kementerian Pekerjaan Umum dan Perumahan Rakyat Korespondensi: tisarasita@pu.go.id

ABSTRAK

Manajemen pemeliharaan jalan merupakan hal yang sangat penting dalam pengelolaan jalan raya. Jl. Prof. Dr. Sardjito dan Jl. AM. Sangaji yang telah dilalui oleh volume lalu lintas membutuhkan pemeliharaan agar memenuhi umur desain rencana dan mencegah kondisi yang menjadi parah. Oleh karena itu, tujuan dari penelitian ini adalah untuk menilai kondisi perkerasan sehingga jalan dapat berfungsi lebih optimal. Penelitian ini secara visual diselesaikan dengan menggunakan Metode Pavement Condition Index (PCI). Metode ini dimulai dengan membagi jalan menjadi beberapa unit panjang, yaitu 30 m untuk setiap unit sampel. Kemudian, masing-masing unit sampel diamati, dievaluasi, dan dianalisis untuk dapat diidentifikasi tipe kerusakannya dan tingkat keparahannya untuk didapatkan nilai rating PCI pada ruas jalan tersebut. Hasil penelitian menunjukkan bahwa tipe kerusakan yang terjadi pada ruas jalan tersebut antara lain corrugation/kerut, longitudinal and transverse cracking/retak memanjang dan melintang, patching/tambalan, polished aggregate, raveling, dan potholes/lubang. Tipe kerusakan yang paling sering terjadi adalah longitudinal and transverse cracking/retak memanjang dan melintang, patching/tambalan, dan raveling dengan tingkat keparahan rendah. Berdasarkan analisis dengan metode PCI untuk kedua ruas jalan tersebut didapatkan kondisi excellent, oleh karena itu tindakan yang disarankan adalah pemeliharaan rutin agar dapat memperpanjang umur dari perkerasan pada ruas jalan tersebut. Pemilihan jenis perbaikan jalan dibandingkan antara Metode PCI dan Metode Asphalt Institute.

Kata kunci: Pavement Condition Index, manajemen pemeliharaan jalan

ABSTRACT

Road maintenance management is a very important issue in the highway management. Existing roads infrastructure on Jl. Prof. Dr. Sardjito and Jl. AM. Sangaji that has been passed by the volume of traffic requires maintenance to prevent severe condition as predicted in design life. Therefore, the objective of this study is to appraise a survey pavement condition method so that the road can be functional more optimal. This study was visually completed by using Pavement Condition Index (PCI) method. It was started by dividing the road into several units length in 30 m for each unit sample. Then, each of the sample unit was observed, evaluate, and analyze to identify the distress type and severity level in order to obtain PCI rating value of the pavement condition. The result of the study showed that the distress types in this research included the corrugation, longitudinal and transverse cracking, patching, polished aggregate, raveling, and potholes. The most distresses that usually occur are longitudinal and transverse cracking, patching for both road conditions is excellent; therefore, the suggestion that can be given for those sample roads is preventive maintenance to extend a pavement's life. The road repair options are compared between PCI method by US Army and Asphalt Institute.

Keyword: Pavement Condition Index, road maintenance

1. INTRODUCTION

Road maintenance management is a very important issue in the management of the highway. Existing road infrastructure that has been passed by the volume of traffic vehicle would have decrease quality (structural and functional) as predicted in design life. Therefore, road maintenance program requires good planning and adequate funding that is continuous, so that the maintenance system can be properly selected and applied optimally. Data analysis and evaluation of pavement performance for a certain project objectives require accuracy measurements. Mechanism of collecting data is visually to detect and analyze the road condition to obtain representative data as an input to define a strategy and priority programs. The output of this road maintenance management program will be referred for treatment decision making of road condition.

Roads in Sleman and Yogyakarta will be the focus of this study, particularly Jl. Prof. Dr Sardjito (Mirota Kampus intersection to SMK 2 Yogyakarta intersection) and Jl. AM. Sangaji (SMK 2 Yogyakarta intersection to the Tugu Yogyakarta intersection), it can be seen in Figure 1 and Figure 2. The volume of traffic is fairly high at this location, especially at the intersection of Tugu as one of the tourist spots and a connecting road to Jl. Malioboro. Moreover at Jl. Prof. Dr Sardjito and Jl. AM. Sangaji is a connector road to the Gadjah Mada University and to various important locations in the city of Yogyakarta. Pavement condition surveys give an indication of the serviceability of the road pavements and also the physical condition of the assets. It is referred to as the collection of data to determine the ride quality and structural integrity of a road segment. They are based on observations by surveyors as well as measurements of pavement roughness, surface distress, skid resistance, deflection, among others. Condition ratings may be done manually or through automated means. The choice of whether automated or manual depends on an agency's priorities and its available resources. The condition rating for a particular section is chosen from a scale, which may range from 0 to 100, 0 to 5 or even 0 to 99. Damage appears slowly at first, and then gradually accelerates, accumulating to become visible as structural distress and tangible as ride quality reduced. If distress is observed and corrected in a timely manner, low cost strategies will restore the road to nearly its original condition. However, if early treatment is neglected or postponed, the accumulated damage will require a more costly repair treatment. Recognizing that damage accumulation and acceleration is a key to understanding the need for early, low-level, low-cost preventive maintenance treatments. The main objectives of the research are: (1) investigate and evaluate the asphalt pavement defects by using pavement condition index (PCI); and (2) estimate the maintenance options.

Figure 1. Survey location: Jl. Prof. Dr. Sardjito

Figure 2. Survey location: Jl. AM. Sangaji

Pavement Condition Index (PCI)

Pavement Condition Index (PCI) is a numerical rating of the pavement condition that ranges from 0 to 100 with 0 being the worst possible condition and 100 being the best possible condition (ASTM D6433 – 07, 1999). Pavement Condition Index is the most precise index in many pavement evaluation studies. PCI incorporates data from 19 different kinds of pavement distresses as well as their severity and quantity. Furthermore, it gives an insight to the causes of distresses and the relation between pavement deterioration and climatic and/or loading conditions. Therefore, it provides an index of the pavement's structural integrity, as well as surface operational condition. PCI index is extensively used in pavement experts (Zultuom, 2011). Federal Aviation Administration (F.A.A.), U.S. Air Force, American Public Works Association (APWA) and many other agencies worldwide accept this method for pavement condition assessment. More details on PCI method are available in ASTM D6433 – 07 (1999): Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. PCI is the only pavement-rating index that has gained an ASTM standard designation.

In PCI calculation, pavement deterioration rate is a function of distress type, distress severity, and density of distress. For each type, each level and extent of damage according to some nomographs a deduct value is obtained. Deduct values indicate the degree of effect that each combination of distress type, severity level, and distress density has on pavement condition. Eventually, a proportion of the sum of these deduct values is subtracted from 100 and the PCI is determined. The value of PCI varies between 100 for a new pavement with no distress to 0 for a failed pavement. Hence, pavements with lower PCI should be given higher priority for maintenance. Pavement quality condition for different values of PCI is illustrated in Figure 3. In AHP modeling, the PCI criterion was divided to 7 sub-criteria. Using this evaluation index also enables decision makers to account for pavement life cycle costs, by introducing the critical point. Critical PCI is the PCI after which the pavement begins to deteriorate rapidly. Therefore, it would be a wise and prudent

decision to keep all the sections above this point. A sample of deterioration model and rate of changes in PCI during years was also published for the same case study (Moazami et al., 2011).

Figure 3. Numerical representation of PCI and pavement quality condition

The PCI is normally conducted annually in order to evaluate changes that occur in a road network system. It is a subjective method of evaluation based on inspection and observation. The PCI is also an informative tool that shows the current condition of the road network and its deterioration over time as illustrated in Figure 4. Some uses and benefits of PCI include, identifying the need for immediate maintenance and rehabilitation (M & R) (Galehouse et. Al. 2003) of roads; developing a road network preventive maintenance strategies and budgets; and for evaluating pavement materials and designs (see Figure 5).

Figure 4. Pavement condition vs age (Source: Road Millage, August 7, 2012)

Figure 5. Benefits of M & R as a function of pavement condition (PCI) (Source: Galehouse et. al. 2003)

Road Maintenance Strategies

The PCI procedure was developed by the Colorado Division of Aeronautics (2011) to provide a numerical indication of overall pavement condition. During a PCI survey, visible signs of deterioration within a selected sample unit are recorded and analyzed. Distress type, severity, and quantity are all identified and recorded. This information is then used to develop a composite index (PCI number) that represents the overall condition of the pavement in numerical terms, ranging from 0 (failed) to 100 (excellent). In general terms, pavements above a PCI of 65 that are not exhibiting significant load-related distress will benefit from preventive maintenance actions, such as crack sealing and surface treatments. Pavements with a PCI of 40 to 65 may require major rehabilitation, such as an overlay. Often, when the PCI is less than 40, reconstruction is the only viable alternative due to the substantial damage to the pavement structure. This concept, along with the PCI rating scale, is illustrated in Figure 6.

Figure 6. PCI rating scale and recommended repair action (Source: Colorado Division of Aeronautics, 2011)

Road Maintenance Management Using Pavement Condition Index (PCI) Survey (Tisara Sita)

The types of distress identified during the PCI inspection provide insight into the cause of pavement deterioration. PCI distress types are characterized as load-related, climate/durability-related, and other (distress types that cannot be attributed solely to load or climate/durability). Each of the distress types and their associated primary cause of distress are identified in Table 1. By knowing the causes of the pavement deterioration, more appropriate repair and rehabilitation alternatives can be identified. Table 2 provides additional information on the likely cause of each distress type and feasible maintenance strategies for addressing each distress type for AC pavements.

	Pavement Distress Ca	itegory
Load-Related	Climate-Related	Other
Fatigue	Block Cracking	Bleeding
(Alligator)	Joint Reflection	Corrugation
Cracking	Cracking	Depression
Rutting*	Longitudinal and	Jet Blast
-	Transverse	Oil Spillage
	Cracking	Polished
	Patching	Aggregate
	Raveling and	Shoving
	Weathering	Slippage
		Swelling

Table 1. Distress types	and primary	distress	categories fo	or AC pavements

Table 2. Causes of flexible pavement distresses and feasible maintenance strategies

Distress Type	Probable Cause of Distress	Feasible Maintenance Strategies
Alligator Cracking	Fatigue failure of the asphalt concrete surface under repeated traffic loading	If localized, partial- or full-depth asphalt patch. If extensive, major rehabilitation needed.
Bleeding	Excessive amounts of asphalt cement or tars in the mix and/or low air void content	Spread heated sand, roll, and sweep. Another option is to plane excess asphalt. Or, remove and replace.
Block Cracking	Shrinkage of the asphalt concrete and daily temperature cycling; it is not load associated	At low severity levels, crack seal and/or surface treatment. At higher severities, consider overlay.
Corrugation	Traffic action combined with an unstable pavement layer	If localized, mill. If extensive, remove and replace.
Depression	Settlement of the foundation soil or can be "built up" during construction	Patch.
Jet Blast	Bituminous binder has been burned or carbonized	Patch.
Joint Reflection	Movement of the concrete slab beneath the asphalt concrete surface because of thermal and moisture changes	At low and medium severities, crack seal. At higher severities, especially if extensive, consider overlay.
Longitudinal and Transverse Cracking	Cracks may be caused by 1) poorly constructed paving lane joint, 2) shrinkage of the AC surface due to low temperatures or hardening of the asphalt, or 3) reflective crack caused by cracks in an underlying PCC1 slab	At low and medium severity levels, crack seal. At higher severities, especially if extensive, consider overlay options.
Oil Spillage	Deterioration or softening of the pavement surface caused by the spilling of oil, fuel, or other solvents	Patch.
Patching	N/A	Replace patch if deteriorated.
Polished Aggregate	Repeated traffic applications	Aggregate seal coat is one option. Could also groove or mill. Overlay is another option.
Raveling and Weathering	Asphalt binder may have hardened significantly	Patch if isolated. If low-severity, consider surface treatment if extensive. At medium and high severity levels, consider major rehabilitation if extensive.
Rutting	Usually caused by consolidation or lateral movement of the materials due to traffic loads	Patch medium and high severity levels if localized. If extensive, consider major rehabilitation.
Shoving	Where PCC pavements adjoin flexible pavements, PCC "growth" may shove the asphalt pavement	Mill and patch as needed.
Slippage Cracking	Low strength surface mix or poor bond between the surface and next layer of pavement structure	Partial- or full-depth patch.
Swelling	Usually caused by frost action or by swelling soil	Patch if localized. Major rehabilitation if extensive.

Type of Repair Options

According to Shahin et al. (2005) the PCI method provides repair option according to the distress type and the severity level shown in Table 3. In addition to PCI method, there are so many road maintenance methods such as *Asphalt Institute* method, AASHTO method, and *Austroad* method. Other method to be compared to PCI method in this research is *Asphalt Institute*–MS 16 with the type of repair options shown in Table 4.

No.	Distress Type	Type of Repair Options				
		Low (L)	Medium (M)	High (H)		
1	Alligator cracking	Do nothing; overlay	Partial or full depth patch; overlay; reconstruction	Partial or full depth patch; overlay; reconstruction		
2	Bleeding	Do nothing	Spreading sand or aggregate	Spreading sand or aggregate		
3	Block cracking	crack > 1/8 in (3 mm);crack closure	Crack closure; surface recycling, heater scarify; overlay	Crack closure; surface recycling, heater scarify; overlay		
4	Corrugation	Do nothing	Reconstruction	Reconstruction		
5	Depression	Do nothing	Leveling; partial or full-depth patching;	Leveling; partial or full- depth patching;		
6	Jet Blast					
7	Joint reflection cracking	Crack closure > 1/in (3 mm)	Crack closure; partial-depth patch	partial-depth patch, reconstruction, joint		
8	Longitudinal and Transverse Cracking	Width of crack closure > 1/8 in (3 mm);	Crack closure	Crack closure; partial-depth patch		
9	Oil Spillage	- (-)/		1		
10	Patching and utility cut patching	Do nothing	Do nothing, reoverlay	Do nothing, reoverlay		
11	Polished aggregate	Do nothing; surface treatment; overlay; scrab and overlay	Do nothing; surface treatment; overlay; scrab and overlay	Do nothing; surface treatment; overlay; scrab and overlay		
12	Raveling and Weathering	Do nothing; Closure surface; surface treatment	Closure surface; surface treatment.; overlay	Surface treatment; overlay; recycling; reconstruction.		
13	Rutting	Do nothing; scrab and overlay	Levelling or partial; or full depth patch; scrab and overlay	Levelling or partial; or full depth patch; scrab and overlay		
14	Shoving	Do nothing; scrab	scrab; partial- or full -depth patch.	scrab; partial- or full -depth patch.		
15	Slippage cracking	Do nothing; partial-depth patch.	Partial-depth patch.	Partial-depth patch.		
16	Swelling	Do nothing	Do nothing; reconstruction	reconstruction		
17	Potholes	Do nothing; partial or full-depth patch	partial or full-depth patch	full-depth patch		

Table 3. Type of repair options based on PCI method [9]

Table 4. Type	of repair base	d on Asphalt Institute	(MS-16) Method

No.	Distress Type	Repair Option					
		Low (L)	Medium (M)	High (H)			
1	Alligator cracking	Slurry seal; surface treatment or skin patching.	Full-strength patch.	Full-strength patch.			
2	Bleeding	Seal coat.	Spreading Hot sand; or spreading hot rock screening.	Spreading Hot sand; or spreading hot rock screening			
3	Block cracking	Surface seal.	Asphalt emulsion'slurry; surface treatment or slurry seal; overlay.	Asphalt emulsion'slurry; surface treatment or slurry seal; overlay.			
4	Corrugation	Surface treatment	Levelling; milling; overlay	Full-depth patch.			
5	Settlement or grade depressions	Surface treatment; micro- surfacing.	Skin patch or full-depth patch;	Skin patch or full-depth patch;			
6	Edge cracking	Closure or filling the cracks with asphalt emulsion slurry or mix asphalt sand	Replacement of the shoulder material, installation of drainage	Replacement of the shoulder material, installation of drainage			
7	Reflective cracks	Surface treatment (slurry seal or chip seal), seal cracks.	Cleaning and crack closure	Filling with asphalt emulsion slurry or HMA finely graded			
8	Linear cracking	Closure or cracks repair	Closure or cracks repair	Closure or cracks repair			
9	Utility cut and/or patch failure	Do nothing	Full depth patch	Full depth patch			
10	Polished aggregate	Overlay HMA; sand seal or aggregate seal coat.	Overlay HMA; sand seal or aggregate seal coat.	Overlay HMA; sand seal or aggregate seal coat.			
11	Potholes	Cleaning and holes closure with cold mix asphalt.	full-depth patch.	full-depth patch.			
12	Rutting	Skin patching; micro- surfacing; or chip seal.	Full depth patch or overlay HMA.	Reconstruction			
13	Shoving	Surface treatment	Levelling; scrabing; overlay.	Full-depth patch.			
14	Slippage cracking	Replacement of the surface patches	Replacement of the surface patches	Replacement of the surface patches			
15	Swell	Full-depth patch.	Full-depth patch.	Full-depth patch.			
16	Weathering and raveling	Surface treatment (chip seal or slurry seal)	Surface treatment (chip seal or slurry seal)	Surface treatment (chip seal or slurry seal)			

Source: Asphalt Institute MS-16, 2001

Road Maintenance Management Using Pavement Condition Index (PCI) Survey (Tisara Sita)

2. METHODOLOGY

Quantitative research approach is chosen instead over qualitative research. The used data is primary data, and after that the available data is being analyzed. The methodology flow chart for this research can be seen in Figure 7. The data analysis flowchart can be seen in Figure 7.

1. Proposing The Road Maintenance Strategy

The road maintenance strategy is proposed after the road condition rating is obtained. The road maintenance strategy is selected in accordance with Figure 6. Road maintenance priority is determined based on the lowest condition of the road and the highest AADT.

2. Determine The Road Repair Options

Maintenance is an essential practice in providing for the long-term performance and the esthetic appearance of an asphalt pavement. The purpose of pavement maintenance is to correct deficiencies caused by distresses and to protect the pavement from further damage. After road maintenance obtained, then repair options is determined based on the distress type and the severity level that occurs in accordance with Tables 2, 3, and 4.

Figure 7. Research methodology flowchart

3. RESEARCH RESULT AND ANALYSIS

PCI Calculation Results

PCI calculation results for each sample unit on Jl. Prof. Dr. Sardjito are on Table 5.2, the number of distress types in each sample unit can be seen on Figure 8, while the PCI Rating for Jl. Prof. Dr Sardjito can be found on Figure 9.

Table 5. PCI calculation results of each sample unit on Jl. Prof. Dr. Sardjito

Sample Unit	PCI	Rating	Sample Unit	PCI	Rating	Sample Unit	PCI	Rating
Sample Unit 1	100	EXCELLENT	Sample Unit 12	100	EXCELLENT	Sample Unit 23	100	EXCELLENT
Sample Unit 2	100	EXCELLENT	Sample Unit 13	100	EXCELLENT	Sample Unit 24	100	EXCELLENT
Sample Unit 3	100	EXCELLENT	Sample Unit 14	100	EXCELLENT	Sample Unit 25	100	EXCELLENT
Sample Unit 4	100	EXCELLENT	Sample Unit 15	100	EXCELLENT	Sample Unit 26	91	EXCELLENT
Sample Unit 5	100	EXCELLENT	Sample Unit 16	100	EXCELLENT	Sample Unit 27	97	EXCELLENT
Sample Unit 6	100	EXCELLENT	Sample Unit 17	100	EXCELLENT	Sample Unit 28	100	EXCELLENT
Sample Unit 7	100	EXCELLENT	Sample Unit 18	100	EXCELLENT	Sample Unit 29	100	EXCELLENT
Sample Unit 8	100	EXCELLENT	Sample Unit 19	100	EXCELLENT	Sample Unit 30	100	EXCELLENT
Sample Unit 9	100	EXCELLENT	Sample Unit 20	75	VERY GOOD	Sample Unit 31	100	EXCELLENT
Sample Unit 10	95	EXCELLENT	Sample Unit 21	72	VERY GOOD			
Sample Unit 11	100	EXCELLENT	Sample Unit 22	81	VERY GOOD	Average	97	EXCELLENT

Figure 8. Number of Distress Types in each sample unit on Jl. Prof. Dr. Sardjito

Figure 9. PCI Ratings on Jl. Prof. Dr. Sardjito

PCI calculation results for each sample unit on Jl. AM. Sangaji are on Table 6, the number of distress types in each sample unit can be seen on Figure 10, while the PCI Rating for Jl. AM. Sangaji can be found on Figure 11.

Table 6. PCI calculation results of each sample unit on Jl. AM. Sangaji

Sample Unit	PCI	Rating	Sample Unit	PCI	Rating
Sample Unit 1	77	VERY GOOD	Sample Unit 10	80	VERY GOOD
Sample Unit 2	89	EXCELLENT	Sample Unit 11	90	EXCELLENT
Sample Unit 3	87	EXCELLENT	Sample Unit 12	78	VERY GOOD
Sample Unit 4	90	EXCELLENT	Sample Unit 13	90	EXCELLENT
Sample Unit 5	86	EXCELLENT	Sample Unit 14	54	FAIR
Sample Unit 6	84	VERY GOOD	Sample Unit 15	79	VERY GOOD
Sample Unit 7	87	EXCELLENT	Sample Unit 16	79	VERY GOOD
Sample Unit 8	87	EXCELLENT	Sample Unit 17	70	GOOD
Sample Unit 9	86	EXCELLENT	Average	82	VERY GOOD
		S 4 S 4 S 4 S 4 S 4 S 4 S 4 S 4	4 5 6 7 8 9 10 11 12 13 14 15 16 17 Sample Unit		

Figure 10. Number of Distress Types in each sample unit on Jl. Prof. Dr. Sardjito

Figure 11. PCI Ratings on Jl. AM. Sangaji

The road condition rating based on PCI calculation for both roads, Jl. Prof. Dr. Sardjito and Jl. AM. Sangaji can be seen on Figure 12, while the PCI distribution value for both roads can be found on Figure 13.

Figure 12. Road condition rating based on PCI calculation on Jl. Prof. Dr. Sardjito and Jl. AM. Sangaji

Figure 13. PCI distribution value on Jl. Prof. Dr. Sardjito and Jl. AM. Sangaji

Road Maintenance Strategies

After determine the road maintenance priority, which presented on Table 7, road maintenance strategies based on the PCI method is selected based on Figure 6. Pavement with PCI values above 65, generally do not show significant distress level (due to load) and can be treated with preventive maintenance such as the closure of cracks and surface maintenance. Pavement with 40-65 PCI values needs rehabilitation, such as overlay. If PCI value is less than 40, then the most viable alternative maintenance to be applied is the reconstruction because the damage that occurs is structural damage. Road maintenance strategy based on the value of the PCI is showed in Table 8.

	Table 7. Road	maintenan	ce priority based or	n PCI method
	No.	link	PCI	Rating
	1 Jl. AM. Sang	gaji	82	VERY GOOD
	2 Jl. Prof. Dr.	Sardjito	97	EXCELLENT
	Table 8. Road	maintenance	e strategies based o	on PCI method
No.	Link	PCI	Rating	Maintenance Strategy
1	Jl. AM. Sangaji	82	VERY GOOD	Preventive Maintenance

The importance of choosing the right maintenance strategy will have an impact on the resources to be spent, such as costs, labour, tools, and time. The precision maintenance strategy needs to be taken with a rational basis. PCI illustrates the maintenance strategy selection related to PCI value and time as shown in Figure 14.

D 343

Pavement in fair condition needs to be rehabilitated immediately in order not to worsen the condition. Figure 14 illustrates that if it is assumed that pavement design life is 10 years of service, so the required time for pavement of the fair condition becomes failed only takes 1.5 years. Therefore if the road PCI value is 65, it must be rehabilitated, such as thin overlay or patching. If the pavement becomes failed due to late rehabilitation, it takes 4 to 5 times the cost of rehabilitation.

Road Repair Options

As the road priority maintenance has been completed obtained, the road repair options have to be determined, so the fieldwork can be done immediately. Repairs must be done immediately to prevent the worsen damage, so that the repair options chosen is still appropriate to the type of distress, the severity level, and the quantity of the damage. This is because the damage is affected by time, load, and weather; so the longer it is not repaired, the worse the type, the severity level, and the quantity of damage. Road repair options based on the method of PCI and Asphalt Institute MS-16 can be seen in Table 9 and Table 10. PCI method by The Unified Facilities Criteria (2004) does not consist the distress type as follows: railroad crossing, potholes, bumps and sags, edge cracking, and lane/shoulder drop off. The repair option of pothole in Table 9 is determined by Shahin et al. (2005).

Table 9. Road repair options based on PCI method and Asphalt Institute Method on Jl. Prof. Dr. SardjitoDistress TypeSeverity Level and Repair Options

	Low	Repair Options			
	Number of Sample Unit	РСІ	Asphalt Institute		
Patching (10)	10, 20, 21, 22, 27	Do nothing	Do nothing		
Raveling/ Weathering (12)	20, 21, 22	Do nothing; Closure surface; surface treatment	Surface treatment (chip seal or slurry seal)		
Pothole (17)*	26	Do nothing; partial atau full-depth patch	Cleaning and holes closure with cold mix asphalt.		

Table 10. Road repair options based on PCI method and Asphalt Institute Method on Jl. AM. SangajiDistress TypeSeverity Level and Repair OptionsSeverity Level and Repair Options

	Low	Repair	Options	Medium	Repair	Options
	Number of Sample Unit	PCI	Asphalt Institute	Number of Sample Unit	PCI	Asphalt Institute
Corrugation (4)	7	Do nothing	Surface treatment	-		
Long. And Trans. Cracking (8)	1, 2, 3, 5, 6, 7, 9, 10, 14, 16, 17	Width of crack closure > 1/8 in (3 mm)	Closure or cracks repair	10	Crack closure	Closure or cracks repair
Patching (10)	1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15	Do nothing	Do nothing	1, 2, 6, 7, 8, 11, 14, 16, 17	Do nothing, reoverlay	Full depth patch
Polished Aggregate (11)	2, 3, 11, 13, 14, 15, 16, 17	Do nothing; surface treatment; overlay; scrab and overlay	Overlay HMA; sand seal or aggregate seal coat.			
Raveling/ Weathering (12)	2, 4, 5, 6, 12, 13, 14, 15, 16, 17	Do nothing; Closure surface; surface treatment	Surface treatment (chip seal or slurry seal)	3, 4, 7, 10, 11, 12, 13, 14, 16	Closure surface; surface treatment; overlay	Surface treatment (chip seal or slurry seal)
Rutting (13)	1	Do nothing; scrab dan overlay	Skin patching; micro-surfacing; or chip seal.			

Distress Type

Severity Level and Repair Options

	High	Repair Options		
	Number of Sample Unit	PCI	Asphalt Institute	
Long. And Trans. Cracking (8)	9	Crack closure; partial-depth patch	Closure or cracks repair	
Patching (10)	10, 12, 17	Do nothing, reoverlay	Full depth patch	
Raveling/ Weathering (12)	13, 15	Surface treatment; overlay; recycling; reconstruction	Surface treatment (chip seal or slurry seal)	

344 🗖

4. CONCLUSION

After conducted an analysis and discussion of the results using the PCI method, the conclusions can be explained as follows.

- a. The PCI value of Jl. Prof. Dr. Sardjito is 97, while on Jl. AM. Sangaji is 82;
- b. The road condition rating of Jl. Prof. Dr. Sardjito is "Execllent", while on Jl. AM. Sangaji is "Very Good";
- c. The road maintenance of Jl. AM. Sangaji is higher priority than Jl. Prof. Dr. Sardjito. Both of Jl. Prof. Dr. Sardjito, and Jl. AM. Sangaji only needs preventive maintenance;
- d. Both of Jl. Prof. Dr. Sardjito, and Jl. AM. Sangaji only needs preventive maintenance. Effective maintenance can extend a pavement's life. Crack sealing and surface treatments can reduce in aging of asphalt pavement. The provision of necessary equipment for maintenance work in order to raise the level of efficiency of maintenance;
- e. PCI method by The Unified Facilities Criteria (2004) should consist the distress type and also the repair options, as follows: railroad crossing, potholes, bumps and sags, edge cracking, and lane/shoulder drop off;
- f. Axle-load of vehicles must be controlled for preserving the pavement condition;
- g. For Public Works Service of Yogyakarta and Sleman, periodic inspection is necessary to provide current and useful evaluation data. It is recommended that ratings be updated every year. The survey should be conducted in a more thorough and conducted by surveyors who have knowledge and high sense of engineering in assessing the distress. Each surveyor should be trained under the supervision of engineers who have experience in advance to ensure the reliability of data to be obtained; and
- h. It is necessary to study the application of the preventive maintenance management then compared with corrective maintenance or reactive maintenance, which commonly implemented in Indonesia.

REFERENCES

- [1] Aeronautics, C. D. (2011). Pavement Evaluation and Pavement Management System Update. Retrieved January 02, 2014, from www.codot.gov
- [2] Applied Pavement Technology, Inc. (2010). Pavement Condition Summary, Colorado Springs Airport. Report.
- [3] ASTM International. (2007). Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. West Conshohocken, United States: ASTM International.
- [4] Civil Aviation Safety Authority, Australian Governmentent. (2011). Strength Rating of Aerodrome Pavements. Advisory Circular.
- [5] Federal Aviation Administration. (2014). Airport Pavement Management Program (PMP). U.S. Department of Transportation. Advisory Circular.
- [6] Federal Aviation Administration. (2014). Guidelines and Procedures for Maintenance of Airport Pavements. U.S. Department of Transportation. Washington, DC: Advisory Circular.
- [7] Moazami, D. e. (2011, June 18). The Use of Analytical Hierarchy Process in Priority Rating of Pavement Maintenance. Scientific Research and Essays Vol. 6, 2447-2456.
- [8] Rosalina, D. (2013). Sistem Manajemen Pemeliharaan Perkerasan Jalan dengan Metode Manual Pemeliharaan Rutin Jalan untuk Jalan Nasional dan Propinsi Tahun 2011. Yogyakarta: MSTT, Universitas Gadjah Mada.
- [9] Shahin, M. (1994). Pavement Managements for Airports, Roads, and Parking Lots (Vol. Fourth Edition). Massachusetts: Chapman and Hall, Kluwer Academic Publisher.
- [10] The Asphalt Institute. (2001). Asphalt in Pavement Maintenance. Manual Series, Kentucky.
- [11] U.S. Army Corps of Engineers. (2004). Airfield Pavement Condition Survey Procedures Pavements. Department of The Army and The Air Force. Washington, DC: U.S. Air Force Civil Engineering Support Agency (AFCESA/ CESC).
- [12] U.S. Army Corps of Engineers. (2009). Asphalt Surfaced Airfields: Paver Distress Identification Manual . Florida: U.S. Air Force Civil Engineering Support Agency (AFCESA/CESC).