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Abstract - Identification of land use and land cover in forest areas can be challenging due to various land cover 

types within a forest can be similar, making it hard to differentiate between them using remote sensing 

approach. We hypothesized that random forest classification (RF) would outperform maximum likelihood (ML) 

in the classification of land use and land cover (LULC) in forest areas compared to maximum likelihood (ML). 

To verify this hypothesis, we conducted a comparative analysis, assessing the accuracy of RF and ML in the 

classification of LULC within the Endau-Rompin National Park (ERNP) region, utilizing Landsat 8 imagery. 

An accuracy assessment demonstrated that the RF classifier (overall accuracy: 92% (2013) 91% (2016) 79% 

(2022) with kappa coefficient: 0.843 (2013), 0.817 (2016) and 0.674 (2022), performed better than ML 

classifying land cover. Our results suggest that both methods are able to classify land cover of forest area, but RF 

is more accurate than ML. From the classification result of RF classification, we calculate the land cover changes 

of ERNP from 2013 to 2022. Results showed that there are small changes of forest area were found in ERNP. 

The total forest area decreases from 163250.089 ha to 144765.46 ha during 2013 to 2022. This finding suggests 

that the effectiveness of the protected area in mitigating deforestation in its surrounding regions may be 

somewhat limited, as indicated by the observed minor changes. 

Keywords: land use and land cover change, protected area, remote sensing, maximum likelihood, random 

forest. 

 I. INTRODUCTION 

In recent years, human activities have significantly impacted forest areas, resulting in a decline in global 

biodiversity. This decline can be attributed to extensive forest degradation and changes in (LULC) [1]. The 

alteration of LULC has been identified as a major contributor to global biodiversity change over the past 

few decades [2]. Within the field of remote sensing (RS), image classification plays a crucial role, as 

selecting the most suitable method to generate land cover information is a fundamental step in any study. 

This technique is widely employed to investigate changes in land use and land cover. Previous studies have 

utilized various methods to extract information about land use and land cover changes from satellite 

imagery, including supervised and unsupervised classification approaches [3]. Supervised classification, 

which encompasses techniques such as minimum distance, parallelepiped, and maximum likelihood 

classification, has been commonly used. Additionally, non-parametric methods like fuzzy classification, 

nearest- neighbor classification, and machine learning techniques such as random forest, support vector 

machines, and neural networks have been employed [4]. From previous studies, the Maximum Likelihood 

classification method is a well-known statistical decision criterion used for the analysis of satellite images. 

This method has been mostly applied for land cover classification and monitoring of land use changes, 

showing overall high accuracies. However, when applied to forest areas, this method may have difficulty 

distinguishing between different forest types due to the complex and diverse vegetation cover. Additionally, 

overlapping signatures, sensitivity to training data, and vulnerability to the distribution of categories in 

feature space are other weaknesses of this method in forest areas. Maximum likelihood classification may 

have difficulty distinguishing the pixels that come from different land cover classes but have very similar 

spectral properties [5][3]. This can lead to errors in classification, especially in areas where different land 

cover types overlap, such as forest edges.  
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The random forest algorithm has gained significant popularity and widespread adoption in the field of 

land use/land cover classification, with a particular emphasis on applications related to forests [6][7]. Its 

utilization in this domain has been expanding rapidly, driven by its ability to handle the complex and 

heterogeneous nature of forest environments, and its capacity to provide accurate and reliable classification 

results [8]. Random Forest classification is a supervised machine learning algorithm that is constructed from 

decision tree algorithms [9]. The decision tree is a flowchart-like structure where each internal node 

represents a test on an attribute, each branch represents the outcome of the test, and each leaf node represents 

a class label or a prediction. In the context of Random Forest classification, multiple decision trees are 

created during the training phase. Each decision tree is constructed using a subset of the training data and a 

random subset of features. This randomness injects diversity among the individual trees and helps to reduce 

overfitting [10][11]. 

 In this study, the ability of RF and ML classifiers were explored in identification land use land cover 

of Endau-Rompin National Park (ERNP). The accuracy of these two classifiers on Landsat 8 imagery were 

compared and choose the best classifier to estimate the land use land cover changes over ERNP and its 

surrounding areas. 

II. MATERIALS AND METHODS 

A. Study Site 

Taman Negara Endau Rompin, alternatively referred to as Endau-Rompin State Park, is a vast national 

park situated in the states of Pahang and Johor in Peninsular Malaysia. Encompassing a total area of 

approximately 87,000 hectares, it stands as one of the largest protected regions within the country. The park 

is divided into two sections, with the northern part designated as Endau-Rompin State Park and overseen 

by the Pahang state government, while the southern part falls under the management of the Johor National 

Parks Corporation (JNPC). Access to the park is facilitated through two entry points on the Johor side and 

one on the Pahang side. Renowned for its rich and distinctive ecosystem, Endau-Rompin National Park 

features diverse habitats, including lowland rainforests, freshwater wetlands, and peat swamp forests, 

supporting a wide array of wildlife species. Notably, the park holds great significance for conservation 

efforts and scientific exploration, being home to numerous threatened and endangered species. Moreover, it 

has been recognized as a UNESCO Biosphere Reserve [1]. 

 

Figure 1. Maps of (a)location of ERNP in Peninsular Malaysia and (b) confined study area: Endau-

Rompin National Park (ERNP) 
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B. Materials 

1. Remotely sensed data 

Multispectral Landsat 8 images were acquired for every three years period of time as the forest 

changes can be seen within that time frame (2013, 2016, and 2022) through the USGS website 

(earthexplorer.usgs.gov), ensuring that the images had cloud cover below 30% to maintain their 

quality. After obtaining the Landsat 8 images, additional preprocessing steps were conducted to 

enhance the quality and reliability of the images before performing the land use land cover 

classification. Following the acquisition of Landsat 8 images, additional preprocessing steps were 

undertaken to enhance the quality and reliability of the images before conducting the land use 

land cover classification. The preprocessing phase includes cloud masking, which involved the 

utilization of the QA_PIXEL Band file. The QA_PIXEL Band file contains quality statistics and 

cloud mask information gathered from the image data (USGS, n.d.). By analyzing this 

information, the cloud-affected pixels were accurately identified and removed from the images. 

The cloud masking process using the QA_PIXEL Band file was performed by applying 

thresholding techniques. 

2. Supplementary data 

One of the ancillary data used for the study area is the land use map of Johor State. This 

supplementary data is utilized to enhance and support the analysis of primary data. To assess the 

accuracy of our land use land cover classification, land use maps were used and were obtained 

from the Department of Agriculture for the years 2013 and 2016. These land use maps served as 

reference data, providing a reliable representation of the actual land use categories during those 

specific years. 

3. Ground data collection 

In addition, we collected XY-coordinates using a handheld GPS unit (Garmin GPSmap 60CSx) on 

May 24, 2023. We utilized these coordinates as reference data to evaluate the classification 

accuracy of the most recent dataset, which is 2022. 

C. METHODOLOGY 

1. Supervised classification 

The supervised classification was employed by using the Maximum Likelihood and 

Random Forest algorithm on the Landsat images. The classification adopted were supervised 

classification method, using the maximum likelihood algorithm and random forest to classify the 

Landsat images (2013, 2016, 2019, and 2022) with different training sites selected. These 

methods extract information from a variety or multiple raster bands to complete the probabilities 

of group membership for each cell pixel in satellite images. Besides, it uses the sample areas of 

the same multispectral space to identify the object classes' characteristics. The same 

characteristics of the object colour will be assigned as one class.  

2. Classifications’ accuracy assessment  

Confusion matrix was used to evaluate the produced classification output using a land use 

map and ground truth points as reference information.  An accuracy assessment of the RF and ML 

classifications was conducted by comparing them to a land use map for the years 2013 and 2016, 

as well as ground-truth data for the year 2022. The assessment was based on reference data that 

accurately represent the true land cover conditions. To evaluate the errors of each classifier, 

confusion matrix approach was employed [12]. Both the user's accuracy and producer's accuracy 

were calculated for each classification method. The overall accuracy and kappa coefficient were 

used to determine the percentage of correctly classified classes and the level of agreement [13], 

respectively, as shown in the table. Accuracy assessment is a critical step in verifying the accuracy 

of classification results and identifying potential errors due to similarities in spectral responses 

among different classes [14]. The confusion matrix, which is a square table, was employed to 

analyze the accuracy of LULC images at various dates. This matrix captures the pixels of the 

image, with rows representing the classified categories and columns representing the ground 
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truth. The off- diagonal cells indicate misclassified values or instances classified into incorrect 

categories [15]. 

Table 1. Training pixels and test pixels for each class for random forest 

classifications (RF) and Maximum Likelihood (ML) 

Year 2013 2016 2022 

Classification 
Training 

pixel 

Test 

pixel 

Training 

pixel 

Test 

pixel 

Training 

Pixel 

Test 

Pixel 

Forest 100 34 100 37 18 10 

Agriculture 40 16 30 18 5 5 

Built up / 

Bare Land 
10 6 6 6 5 5 

Water Body 5 5 5 5 5 5 

   

3. Change Detection Analysis 

From the RF classification results, a change detection analysis was performed by 

implementing post-change detection techniques. This analysis aimed to identify and assess the 

changes that occurred in the land cover over time. By comparing the classified maps for different 

years, areas of significant land cover change were identified and analysed. The post- change 

detection techniques involved comparing the pixel values and their corresponding classes 

between the different time periods. This analysis provided valuable insights into the dynamics 

and trends of land cover changes within the study area. It allowed for the identification of areas 

that underwent substantial transformations, such as deforestation, built up/bare land, or 

agricultural expansion. 

III. RESULTS 

A. Assessment on capability of random forest and maximum likelihood classifiers in identification 

of land use land cover of Endau-Rompin National Park 

Based on the result of RF and ML classifiers in identification land use land cover of ERNP and its 

surrounding areas, LULC classification maps of ERNP were produced with forest areas for the years 2013, 

2016, and 2022 by the RF algorithm (Figure 2) and ML algorithm (Figure 3). Overall accuracy and kappa 

statistics of both classifiers showing that RF performed better than ML (Table 2). Therefore, the RF 

classifier will be used in identification of Endau-Rompin National Park LULC changes.  

Table 2. Accuracy assessment on both classifiers; random forest and maximum likelihood on Landsat 8 

Classification 

RF ML 

Overall accuracy 

(%) 
Kappa 

Overall accuracy 

(%) 
Kappa 

2013 92 0.843 86 0.752 

2016 91 0.817 81 0.665 

2022 79 0.674 66 0.443 

 

Throughout the analyzed Landsat imagery (Table 3), forested areas consistently maintained their 

prominence as the predominant land cover, with agricultural land, built-up or cleared areas, and water 

bodies. Nevertheless, the LULC classification maps offer valuable observations regarding the evolving 

trends in land use and land cover within ERNP and its environs over the specified years. Table 3 showing 

the land cover in hectare over ERNP from 2016 until 2022. 
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Figure 2. LULC maps for the years (a) 2013, (b) 2016, and (c) 2022 in the studied area by using RF 

classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. LULC maps for the years (a) 2013, (b) 2016, and (c) 2022 in the studied area by using 

Maximum Likelihood classification 

(a) (b) 

(c) 

(a) (b) 

(c) 



       ◼             DOI : https://doi.org/10.33579/krvtk.v8i2.4662  

 

 

KURVATEK Vol. 8, No. 2, November 2023:  221 – 230 

 

 

226 

Generally, forest land remained the dominant land cover over the studied period, followed by 

agricultural land, built-up or cleared land, and waterbody. From 2013 to 2022, small declines in forest area 

were found in ERNP and its surrounding area. Forest land covered more than 60 % of the total area and 

there was no significant change in forest area (Table 3). The changes in forest areas did not follow a 

consistent pattern. The forest area within ERNP decreased slightly from 67.28% in 2013 to 66.20% in 

2016. 

Table 3. Land-cover (in hectare and percentage) from 2013 to 2022. 

Class 

2013 2016 2022 

Area (ha) 
Percentage 

(%) 
Area (ha) 

Percentage 

(%) 
Area (ha) 

Percentage 

(%) 

Forest 163250.089 67.28 169890.223 66.20 144765.46 61.19 

Agriculture 54696.2625 22.54 59120.943 23.04 77639.58 32.82 

Built up / Bare 

Land 
18999.13039 7.83 25577.329 9.97 10526.22 4.45 

Water Body 5712.470023 2.35 2026.651 0.79 3644.86 1.54 

 

B. Analysis on Endau-Rompin National Park land use land cover changes 

The change detection analysis provided a basis for understanding the drivers and impacts of land cover 

changes (Table 4 and Figure 4), which is crucial for effective land management and conservation strategies. 

The results of the change detection analysis indicate significant land cover transformations within the study 

period. From 2013 to 2016, the conversion of forest to agriculture covered an area of 13,871.17 hectares, 

while forest to build- up/bare land accounted for 5,516.75 hectares, and forest to water body encompassed 

31.84 hectares. In the subsequent period from 2016 to 2019, the forest underwent further changes with 

8,926.15 hectares converted to agriculture, 3,702.19 hectares transformed into built- up/bare land, and 

801.32 hectares transitioning to water bodies. Additionally, from 2016 to 2019, the conversion of forest 

to agriculture expanded significantly, covering an area of 27,147.57 hectares, with 3,178.10 hectares 

converted to built-up/bare land, and 1,034.492 hectares transformed into water bodies. Significant 

conversion was observed, especially in the outskirt region. Small clearances of forest land and agricultural 

land occurred, and most of the cleared land was replaced by agricultural land. Only a minority of the cleared 

land experienced forest regrowth. 

Table 4. Forest area changes for year (2013-2016), (2016-2019) and (2019-2022). 

Class Changes 2013 - 2016 2019-2022 

Area (ha) Area (ha) 

Forest - Agriculture 13871.17 27147.57 

Forest - Built Up / Bare Land 5516.75 3178.10 

Forest - Water Body 31.84 1034.49 

Total 19419.76 31360.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Land cover changes maps for year (a) 2013-2016, and (b)2019-2022 

(a) (b) 
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IV. DISCUSSIONS 

Our overall results revealed significant changes in forest area in ERNP between 2013 to 2022 due to 

increases in agricultural land in the region. However, the result of land use land cover over the years shows 

a difference total size of the study area according to Table 2, from 242657.95 ha (2013), 256615.14 ha 

(2016), and 236576.11 ha (2022), this happened due to the number of clouds cover for every year are 

different make it difficult to produce a perfect LULC maps. Despite that, the percentage of every class for 

every year seems consistently maintained that can be seen in Table 2 as forested areas as the predominant 

land cover, with agricultural land, built-up or cleared areas, and water bodies. 

The classification results demonstrate that RF outperforms ML in accurately classifying forest areas, as 

indicated by higher overall accuracy and Kappa coefficient values (Table 3 and appendix). This 

improvement is clear in our mapping analysis, as shown in Figure 2, and Figure 3. The RF classification 

achieved an impressive overall accuracy of 87% and a Kappa coefficient of 0.778, whereas the ML 

classification achieved a lower overall accuracy of 77% and a Kappa coefficient of 0.473. Additionally, the 

RF classification exhibited superior performance in detecting water bodies compared to ML, where water 

bodies were misclassified as built-up/bare land. This can be attributed to the robustness of the RF algorithm, 

which effectively handles noisy data and outliers, minimizing the risk of overfitting and enabling better 

generalization to new data [16]. Unfortunately, the accuracy assessment of the year 2019 was unable to 

conduct due to lack of ground data. However, the result for both classification in year 2022 seems to be a 

little bit lower than others due to the insufficient ground data and the area of data collected were smaller 

than the study area where the data were only collected in Peta area but the whole study area covered the 

whole area of ERNP. 

The analysis of land change depicted in Table 2 and Figure 4 reveals a notable increase in the extent of 

agricultural and built-up/bare land areas. It is evident that forest areas have undergone significant 

transformations, being converted to both agricultural and built-up/bare land categories. The expansion of 

agricultural land, particularly the cultivation of oil palm, has been identified as the primary driver of 

increased forest loss in the vicinity of ERNP, aligning with the findings of previous research [1]. 

V. CONCLUSION 

As a conclusion, RF classification outperforms ML classification (Table 3) in accurately mapping land 

use land cover in forested areas. However, it is crucial to emphasize the significance of image quality in 

minimizing classification errors, particularly in densely forested regions where class mixing may occur. 

The accuracy of classification outcomes greatly relies on the quality and resolution of the imagery utilized 

for analysis. Moreover, forest area loss in and surrounding ERNP from 2013 to 2022 was assessed in this 

study. The results indicated that ERNP itself exhibited a commendable level of protection against forest 

degradation. However, ERNP experienced slight decreases in forest cover primarily due to the expansion of 

agricultural activities, particularly the establishment of oil palm plantations. Despite these localized 

challenges, ERNP demonstrated effective forest conservation measures. 
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Appendix 

 

2013 (RF) 

Class Value Forest Agriculture 
Built up / Bare 

Land 
Water Body Total 

User 

Accuracy 
Kappa 

Forest 127 4 2 1 134 95% 0 

Agriculture 3 40 1 2 46 87% 0 

Built up / Bare Land 1 0 15 0 16 94% 0 

Water Body 1 1 1 7 10 70% 0 

Total 132 45 19 10 206 0% 0 

Producer 

Accuracy 

96% 89% 79% 70% 0% 92% 0 

Kappa 0 0 0 0 0 0 0.843 

2013 (ML) 

Class Value Forest Agriculture 
Built up / Bare 

Land 
Water Body Total 

User 

Accuracy 
Kappa 

Forest 113 4 6 4 127 89% 0 

Agriculture 4 39 6 1 50 78% 0 

Built up / Bare Land 2 1 16 2 21 76% 0 

Water Body 0 0 0 10 10 100% 0 

Total 119 44 28 17 208 0% 0 

Producer 

Accuracy 

95% 89% 57% 59% 0% 86% 0 

Kappa 0 0 0 0 0 0 0.752 

2016 (RF) 

Class Value Forest Agriculture 
Built up / Bare 

Land 
Water Body Total 

User 

Accuracy 
Kappa 

Forest 129 8 0 0 137 94% 0 

Agriculture 6 40 2 0 48 83% 0 

Built up / Bare Land 0 0 12 0 12 100% 0 

Water Body 2 1 0 7 10 70% 0 

Total 137 49 14 7 207 0% 0 

Producer 

Accuracy 

94% 82% 86% 100% 0% 91% 0 

Kappa 0 0 0 0 0 0 0.817 

2016 (ML) 

Class Value 

 
Forest Agriculture 

Built up / Bare 

Land 
Water Body Total 

User 

Accuracy 
Kappa 

Forest 110 7 7 6 130 85% 0 

Agriculture 10 39 0 0 49 80% 0 

Built up / Bare 

Land 

0 0 14 6 20 70% 0 

Water Body 1 2 1 6 10 60% 0 

Total 121 48 22 18 209 0% 0 
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Producer 

Accuracy 

91% 81% 64% 33% 0% 81% 0 

Kappa 0 0 0 0 0 0 0.665 

2022 (RF) 

Class Value Forest Agriculture 
Built up / Bare 

Land 
Water Body Total 

User 

Accuracy 
Kappa 

Forest 28 0 0 0 28 100% 0 

Agriculture 3 7 0 0 10 70% 0 

Built up / Bare Land 5 0 1 4 10 10% 0 

Water Body 0 0 0 10 10 100% 0 

Total 36 7 1 14 58 0% 0 

Producer 

Accuracy 

78% 100% 100% 71% 0% 79% 0 

Kappa 0 0 0 0 0 0 0.674 

2022 (ML) 

Class Value Forest Agriculture 
Built up / Bare 

Land 
Water Body Total 

User 

Accuracy 
Kappa 

Forest 26 2 0 0 28 93% 0 

Agriculture 5 5 0 0 10 50% 0 

Built up / Bare Land 5 0 1 4 10 10% 0 

Water Body 3 1 0 6 10 60% 0 

Total 39 8 1 10 58 0% 0 

Producer 

Accuracy 

67% 63% 100% 60% 0% 66% 0 

Kappa 0 0 0 0 0 0 0.443 
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